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Y ABSTRACT

The fundamental purpose of the modal analysis computer pro-
gram package (MAP) is to find some or all of the frequencies A (in cps)
and some or all of the (orthogonal) mode shapes y of any linear dis-
crete system which is governed by a generalized eigenvalue equation
of the form

Ky = AMy

where (1) M and K are real symmetric matrices, (2) M is positive defi-
nite, (3) M is not ill-conditioned with respect to inversion, and
(4) M and k are possibly, but not necessarily, large matrices.

The given problem is reduced to a real symmetric algebraic
eigenproblem Px = Ax by the method of Cholesky (i.e., by the square
root method). The real symmetric matrix P is reduced to a real sym-
metric tridiagonal matrix by the method of Householder. The eigen-
values of the tridiagonal matrix (which are the same as those of the
original problem) are found by a Sturm sequence bisection method. The
user can have the eigenvectors of the tridiagonal matrix computed by
either inverse iteration (or back substitution) or a combination of
inverse iteration and Gram-Schmidt orthogonalization. The eigenvectors
of the tridiagonal matrix are then transformed back into those of P
or into those of the original problem. MAP is capable of finding all
or only some of the eigenvalues, and eigenvectors for all or only some
of the computed eigenvalues. All accumulations are done in double-
precision to improve the numerical accuracy.

Only five of the twenty subroutines in the MAP program package
are directed toward a modal analysis, as such. The remaining fifteen
programs are general purpose mathematical routines which can be used
to solve a variety of problems in numerical linear algebra that involve
real symmetric positive definite matrices and real symmetric matrices.
Each of these general purpose routines has sufficient introductory com-
mentary to make it readily useful. MAP has been put in the Bellcomm
Applications Program Library (#0218).
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SUBJECT: Modal Analysis Computer pate: January 7, 1971
Program Package
FROM: D. L. Mather

TECHNICAL MEMORANDUM

INTRODUCTION

The modal analysis computer program package (MAP) was *
developed at the request of S. N. Hou for Department 2031 and

arose from Apollo structural studies.1 The fundamental purpose
of MAP is to find some or all of the frequencies ) (in cps) and
some or all of the (orthogonal) mode shapes y of any linear dis-

crete system which is governed by a generalized eigenvalue equation
of the form

Ky = MMy

where (1) M and K are real symmetric matrices, (2) M is positive
definite, (3) M is not ill-conditioned with respect to inversion,
and (4) M and K are possibly, but not necessarily, large matrices.
MAP also provides a user with (1) some flexibility in what mathe-
matical methods are used, (2) the capability of easily implementing
different methods, and (3) a great deal of flexibility in what
information can be saved as output and how it can be saved.

Method

The generalized algebraic z2igenproblem is reduced to an

ordinary algebraic etgenproblem by the method of Choleskyz’ 3
(i.e., by the square root method). This technique is used to com-
pute a lower triangular matrix L such that

M = 1LT.

(If M is positive definite, such a matrix not only exists but is

also reale)4 The original equation can now be written as

Ky = ALLTy.

Hence
@ik 1Ty = aaly), or
Px = Ax,

where P = 1 k1T and x = Lly.

* . T
The notation L
cumbersome (L”l)Te

will be used in this memo rather than the
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Note that PT = P. Thus the equation Px = Ax represents
a real symmetric algebraic eigenproblem. The first step in solving
this problem is to reduce the (dense) real symmetric matrix P to a

real symmetric tridiagonal matrix by the method of Householder.s’ 6
The eigenvalues of the tridiagonal matrix (which are the same as
those of the original problem) are found by a Sturm sequence bisection

method.7 The eigenvectors of the tridiagonal matrix can be computed
either by inverse iteration (or back substitution)8 or a combination

of inverse iteration and Gram-Schmidt orthogonalization.g’ 10 The
eigenvectors of the tridiagonal matrix are then transformed into those
of P, i.e, into x. Then, if the user wants them, the vectors x are
transformed into the vectors y, and also the units of the eigenvalues
are changed to cps. These last two operations are done by computing

y = L. Tx and /3/27, respectively.

The crucial questions in deciding which of the two methods
for computing the eigenvectors of the tridiagonal matrix to use are
whether the user wants orthogonal vectors and whether there is a
multiple eigenvalue. Inverse iteration will produce orthogonal vec-
tors if all the eigenvalues are distinct, but will not, in general,
produce orthogonal vectors for a multiple eigenvalue. However, in-
verse iteration combined with Gram-Schmidt orthogonalization will,
in general, yield orthogonal vectors for a repeated eigenvalue. The
latter program requires 6n more locations for arrays, where n is the
dimension of the matrices M and K, and will, as a rule, require more
time than the former.

Neayly all of these methods are known for their accuracy,
speed! and ability to take advantage of symmetry. It should, perhaps,
be pointed out that the bound on the absolute computational error is

the same for all the eigenvalues.ll That is, if the eigenvalue of
larggst magnitude is in error by AA then the eigenvalues of smallest
maganude may be in error by the same amount. Thus the relative com-
putational error will, in general, be greater for the eigenvalues of
smaller magnitude. More specifically, if the ratio of the eigenvalue
of largest magnitude to that of the smallest magnitude is quite large

6 .
gsay, 10" or more) then the eigenvalue of smallest magnitude will not,
in general, have a low relative error. J. H. Wilkinson illustrates

how this happens for a Sturm sequence method.12

If only a few of the n eigenvalues are computed then; of
course, the obvious way of learning of a wide separation in the eigen-
values is not available. In such a case, there are two indicators
of a large separation. One is the trace Tr(P) of the matrix P.*

*
By definition, the trace Tr(S) of an arbitrary matrix S is the
sum of all the main diagonal elements of S.
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Since the sum of all n eigenvalues equals Tr (P}, it follows that
at least one eigenvalue must be as large as TrgPI/n. Hence, a gréP)
(or, to be strictly accurate, a Tr(P){nI_that is large com.paref ao
the eigenvalue of smallest magnitude 1nd1c§tes‘the ex1§tence o
large eigenvalue, and hence a wide separation in the elgenvalugs.
Another indicator is the fact that if P denotes a real symmetric
matrix which has only positive eigenvalues then

max | p,, |  max |2
11 < '

min I pii l min l A

*
where i ranges from 1 to n. MAP computes and prints Tr(P), the
left hand side of the inequality, the ratio of the largest |Ai|

computed to the smallest nonzero |A
the computed eigenvalues.

il computed, and the sum of all

Check Cases

Since MAP was intended for large matrices, illustrative
examples involving large matrices whose exact eigenvalues are known
would be most appropriate. However, there seems to be a lack of
large test matrices for the generalized eigenproblem. Consequently,
the first two of the four check cases involve 20x20 and 25x25 matrices.
These particular problems were picked since very precise answers for
them have been published.

The third example is perhaps the most interesting one. It
is that of a vertical simple beam (an idealized form of the Saturn
V missile and Apollo spacecraft structure). This example may give
a potential user of MAP the most insight into how much precision MAP
can be expected to give in the answers to a practical problem. The
reason for this is that the error in the results is a function of
the discretization error (introduced when the continuous beam was
modeled as a series of mass points) and computational error in
generating the input matrices M and K as well as the ctomputational
error that is introduced by MAP itself. 1In addition to the preceding

reason this example was chosen as its analytic solution is known,l3

it is a source of arbitrarily large matrices, its M and K matrices
have nice numerical properties, and the origin of this programming
task was a structural problem. '

In the last example M = I (the identity matrix) and K is
a matrix whose dimension can be made arbitrarily large and whose exact

eigenvalues are known.

* Communicated to the author in conversation by S. L. Levie.
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Several runs of each of the last two examples were made
in which the size of the input matrices was increased in order to
illustrate the growth of computational error. The computed results
of the runs for all four examples are summarized in the following
tables. The computer output of the runs in Examples 3 and 4 are
available in the Computer Library.

Example 1.14 K and M are 20x20 band matrices of full band width 7.%

k,, = 51-i m,, = 41-i , for i = 1,2,..., 20
i1 i1

k.. =1 m,. =1 , for 0<[i-j|< 3.

ij i]

Published Eigenvalues Eigenvalues Computed by MAP
1.2362 2996 622 1.2362 300

1.2543 8078 474 1.2543 807

1.2619 2368 457 1.2619 237

1.2694 3952 847 1.2694 395

1.2773 9754 724 1.2773 975

1.2856 3483 441 1.2856 348

1.2940 9698 102 1.2940 970

1.3030 1061 009 1.3030 106

1.3125 0454 161 1.3125 046

1.3226 0009 164 1.3226 000

1.3333 9423 801 1.3333 943

1.3450 0343 860 1.3450 035

1.3575 7195 730 1.3575 720

1.3713 1462 185 1.3713 147

1.3866 8413 225 1.3866 841

1.4034 7245 976 1.4034 725

1.4222 3523 837 1.4222 352

1.4475 1739 434 1.4475 174

1.4704 2713 163 1.4704 271

1.4952 1305 093 1.4952 130

15
_ Examples'Zo K and M are 25x25 band matrices of full
band width 7 . M is the identity matrix and K is the matrix defined

*By definition, a matrix S is said to have full band width 2k+1
if k is the smallest positive integer with the property that

: sij = 0 for all i and j such that li—jr>ke



BELLCOMM, INC. -5 -

by

=
"
i
H
e
]
H
=

» Where

4 =1 0 0
-1 4 -1 0

X = o -1 4 -1 o0
0 0 -1 4 -1

0 0 0 -1 4

Only the eigenvalues between 0.19 and 0 .35 were published.

Published Eigenvalues Eigenvalues Computed by MAP
+.1339 7460
.1485 4314
.1485 4316
.1665 6668
.1744 5764
.1744 5765
.2000 0000 0000 .2000 0000
.2000 0000 0000 .2000 0002
.2113 2486 5405 .2113 2487
.2113 2486 5405 .2113 2489
. 2500 0000 0000 .2499 9998
.2500 0000 0000 .2500 0000
. 2500 0000 0000 .2500 0000
.2500 0000 0000 .2500 0000
.2500 0000 0000 .2500 0002
.3060 0230 9436 .3060 0230
.3060 0230 9436 3060 0230
.3333 3333 3333 3333 3334
.3333 3333 3333 .3333 3334
.4409 2697
.4409 2697
.5000 0000
.7886 7508
.7886 7508

.1866 0254
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EXAMPLE 3. * This example is that of a vertical simple beam which
is of uniform density, is unattached at both ends (i.e. free-free),
lies in a vertical plane, and whose motion is restricted to lateral
displacements and rotations. MAP tacitly assumes that the beam is
discrete, i.e., the mass of the beam is assumed to be concentrated
in a finite number of points. One way to think of this is to divide
the beam into, say j equal segments, and regard the mass of each
segment as being distributed equally at the two endpoints of the seg-
ment , Hence a beam that has been divided into j segments will be
equivalent to j+l1 mass points. It can be shown that since the beam
can move in only two directions, each of these j+1 mass points in-
creases the dimensions of the input matrices M and K by two. Thus
by dividing the beam into j segments, one will generate M and K
matrices of dimension 2(j+1).

The eigenvalues and vectors of a discrete beam differ from
those of a continuous beam (with the sole exception that in both cases
the smallest eigenvalue is a zero eigenvalue of multiplicity two).

As the number of segments tends to infinity, however, they do approach
(in the absence of computational error) the eigenvalues and eigen-
vectors of the corresponding continuous beam. Unlike discretization
error, computational error increases as n gets larger. Hence, as n
increases, one might expect to see the computed eigenvalues approach
those of the continuous beam for a while, due to the reduction of
discretization error, and then to see them not getting any closer and
even begin losing digits of accuracy due to a substantial growth of
computational error. The following table (Table 1) summarizes the
performance of MAP in the computation of the eigenvalues and vectors
(or modes shapes) of a free-free beam. Table 2 gives scme information
pertinent to using MAP to solve a generalized eigenproblem - the core
requirement and total charges for a given size of matrix may be of
special interest. The third eigenvalue, i.e., the first nonzero eigen-
value seems to point out most clearly the reduction of discretization
error followed by the eventual dominance of the computational error.

The exact value of the ith eigenvalue (to six places) for the con-
tinuous beam is given at the head of the column containing values of

the ith computed eigenvalue.

%*
The mass and stiffness matrices M and K, respectively, of the

the simple beam were generated using a program written by S. N. Hou.



TABLE 1

The Values of the Seven Smallest Computed Eigenvalues as a
Function of the Dimension n of the Input Matrices M and K

Zero Eigenvalues Nonzero Eigenvalues

.n. 0 0 1.54589 4.26131 8.35597 13.8094 20.6288

10 .0048 .0098 1.3028 3.3013 5.9773 44,221 50.468
20 .0110 .0299 1.4842 3.9766 7.5876 12.223 17.803
30 .0274 .0481 1.5166 4.1178 7.9476 12.924 18.982
40 .0398 .0828 1.5281 4.1665 8.0756 13.183 19.429
50 .0593 .1264 1.5341 4.1889 8.1344 13.304 19.640
60 .0922 .18861 1.5397 4.2014 8.1663 13.369 19.755
70 -1432 .2266 1.5456 4.2103 8.1860 13.408 19.824
80 .2062 .2643 1.5518 4.2144 8.1981 13.433 19.868
20 .2603 .3475 1.5581 4.2215 8.2074 13.451 19.899
100 .2508 . 4699 1.5759 4.2311 8.2184 13.466 19.922
120 . 2253 4746 1.5726 4.2315 8.2238 13.481 19.950
140 .3050 .5728 1.6025 4.2426 8.2323 13.493 19.967
160 .3122 .6974 1.6297 4.2491 8.2384 13.501 19.980
180 .3643 .8518 1.6823 4.2602 8.2480 13.509 19.990
200 .3983 .9670 1.7081 4.2691 8.2535 13.514 20.000
220 .4868 1.0724 1.7560 4.2955 8.2644 13.521 20.007
240 .5768 1.2724 1.8144 4.3066 8.2801 13.530 20.014
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TABLE 2

Information about the Computer Runs as a Function
of the Dimension n of the Input Matrices M and K

Main features of the runs:

(1) M matrix diagonal

(2) n eigenvalues computed if n<50 and fifty eigenvalues computed.
otherwise '

(3) three eigenvectors computed (and transformed into the vectors y)

(4) the only output was the printing of the eigenvalues and vectors

(5) one compilation (except for n=10 and n=20 in which cases there
were three)

Core : Wall-Clock

n Regquirement CPU Time Time Core-Seconds I/ Count Charge
10 31.7K 0:13 1:14 361 1,125 10
20 31.9K 0:12 1:18 363 1,136 10
30 32.3K 0:08 0:50 222 711 6
40 32.8K 0:12 0:56 260 764 7
50 33.4K 0:15 0:54 291 818 8
60 34.1K 0:20 1:09 353 890 10
70 34.9K 0:26 1:04 417 971 11
80 35.8K- 0:34 1:13 494 1,067 13
90 36.8K 0:44 3:39 585 1,173 16
100 37.9K 0:57 7:45 692 1,290 19
. 120 40. 4K 1:26 12:39 1,100 1,562 28
140 43.3K 2:07 3:14 1,367 1,884 35
160 46.6K 3:00 3:57 1,786 2,257 45
180 50. 3K 4:39 7:43 3,174 2,676 78
200 54.4K °©  6:43 9:22 4,201 3,152 103
220 58.9K 9:51 12:59 6,488 3,677 154

240 63.7K 9:13 11:31 7,459 4,237 170
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EXAMPLE 4.l6

n n-1 n-2 cae 2 1
n-1 n-1 n-2 .o
n_z n"z 1'1"‘2 ® 0 8 2 l

2 2 2 eee 2 1
1 1 ... 2 1

The exact eigenvalues are given by

(Zi"l) ki) ) -1

Ai = 0.5(l-cos ) ;, for i =1,2,...,n.

The relative errors in Table 3 were computed from the
formula

exact eigenvalue

Table 4 gives some information pertinent to using MAP to solve an
ordinary eigenproblem - the core requirement and total charges for
a given size of matrix may be of special interest.
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TABLE 3

Maximum Relative Error as a Function of The Dimension n

n Minimum Error (x 106) Maximum Error (x 106)

20 .008370 1.220

40 . 01109 18.72

60 .05949 5.476

80 . 08430 7.687
100 ,1§42 8.472
120 -02919 10.91
140 .04019 14.07
160 .08919 12.75
180 -01420 16.68
200 .1490 19.29
220 .1042 16.26
240 .5004

20.29



- 11 =~

TABLE 4

Information about The Computer Runs as a Function
of The Dimension n of The Input Matrices M and K

Main features of the runs:

(1) Cholesky decomposition skipped (i.e., an ordinary real symmetric
algebraic eigenproblem is being solved).
(2) n eigenvalues computed if n<50 and 50 eigenvalues computed otherwise
(3) three eigenvectors computed (and not transformed into vectors y)
(4) the only output was the printing of the eigenvalues and vectors
(5) one compilation (except for n = 20 and 40 in which cases
there were four)

Core Wall-Clock

n Requirements CPU Time Time Core Seconds IO Count Charge
20 32..6K 0.:14 12:53 361 1,007 10
40 33.5K 0:17 7:56 341 %01 9
60 44 8K 0:15 1:29 260 720

80 36 .5K 0:21 4:45 315 761

100 38 6K 0:34 403 393 835 11
120 41 .1K 0 :44 2:48 530 935 14
140 43 9K 1:01 2:32 614 1,043 16
160 47 . 2K 1:24 8 :44 1,033 1,167 26
180 58 .9K 1:54 9:15 1,288 1,309 32
200 55 .0K 21217 3:18 1,645 1,466 41
220 59 .5K 3:11 4:45 2,317 1,639 56

240 64 .4K 4:04 5:07 3,195 1,828 74
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Usage

While MAP has been used-to solve problems as small as
5x5, potential users of MAP who have such small problems may find
it inconvenient to have to store the matrix M in the manner required
by MAP - the lower triangular part must be stored in a one-dimensional
array by columns. Such users may wish to call the subroutines RESTOR
that acts as an interface between programs which store a whole matrix
in a two-dimensional array and programs which store only the lower
triangular part of a matrix in a one-dimensional array by columns.
Instructions for using RESTOR are given in the introductory commentary.
of RESTOR which is listed in the first appendix.

The introductory commentary to the MAP subroutine itself
is a user's guide to the MAP program package. (See the first appendix).
MAP has been put in the Bellcomm Applications Program Library (#0218).
The relocatable elements of the entire program package are on SYS*BLIB
as MAP/BC, SGEIG/BC, SIREIG/BC, etc.

The author would appreciate being informed of any bugs in
MAP, errors of accuracy or omission in the introductory commentaries,
and anything awkward about using MAP.

Program Description

The MAP program package was written with the idea in mind
that it should be able to handle matrices on the order of 300x300.
Thus growth of computational error and storage were the primary con-
cerns. The sponsor, S. N. Hou, dealt with the former problem by
choosing mathematical methods which are numerically stable and which
use a minimum of arithmetic operations. The mathematical proofs of
the numerical stability of these methods, however, assume that all

. _ . 17, 18
accumulations are done exactly or as nearly so as possible.

All accumulations in MAP are therefore done in double precision to
approximate this condition. The latter problem was handled mainly
by taking advantage of the symmetry in the matrices M, K and P and

of the fact that L and L 1 are lower triangular matrices - only the
lower triangular part of a matrix is kept in core. (I would like to
emphasize that the programs assume these matrices are symmetric - no
check for symmetry is made). Hence the storage requirement for a

matrix is reduced from n2 to n(n+l)/2, i.e., by a factor of about two
for large n. Nevertheless, for a 300x300 matrix, this entails
allocating an array dimensioned at least 45,150. Clearly in a 65K
core environment there can be only one such array. With the sole

exception of the matrix product P = . 1%."T, the mathematical methods

lend themselves to this approach. The computation of P, however,
makes considerable use of external storage areas. The storage prob-
lem is also handled by computing the eigenvectors and storing thgm
on a mass storage device one at a time so that only a one-dimensional
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array dimensioned n is needed to deal with them. The storage
problem can also be alleviated some by overlaying the MAP program
package. Bearing this in mind, the program was segmented as much
as possible. At present, there are twenty subroutines in the
package. Table 5 lists them and gives a very brief description of
each, and Figure 1 shows how they are related.

In order that each subroutine in the package can be easily
understood and changed by someone other than the author, there is a
great deal of commentary in each of the twenty programs comprising
the MAP package. The commentary - is of two kinds: introductory and
intercode. The former explains (among other things) the purpose,
method, and assumptions of the program and defines the input and
output for it. A flowchart can be constructed from the latter.

While the idea that MAP should be able to handle matrices
on the order of 300x300 was the main consideration that determined
the final structure of the MAP program package, it was not the only
one. A second factor was the recognition that the mathematical
methods are of general interest. This led to making each mathe-
matical method a separate subroutine with commentary directed toward
the general user (rather than a structural engineer), led to writing
the control subroutines SGEIG and SIREIG, and influenced the argument
lists of L and LINVRS.

The relationships between all the subroutines in the MAP
program package are illustrated in Figure 1. The subroutines MAP,
INPUT, and OUTPUT are intended for structural engineers (though they
can be used by others provided the terminology of structural problems
is not too inconvenient). SGEIG and all the subroutines below it are
general purpose mathematical programs that solve a variety of problems
in linear algebra which involve real symmetric matrices.

SGEIG and SIREIG differ from the other general purpose
routines in that they are control programs for the solution of a
generalized real symmetric positive definite algebraic eigenproblem
and an ordinary real symmetric algebraic eigenproblem, respectively.
The main purposes of, say, SIREIG are to coordinate the argument
lists of the routines which solve the ordinary eigenproblem for the
user, and potentially to enable the user to have at his disposal via
one CALL statement all the useful eigenvalue and eigenvector programs
at Bellcomm which solve a (possibly) large real symmetric eigenproblem.
These two routines are also written in a way that simplifies the
implementation of new methods. 1In order to incorporate a new eigen-
value or eigenvector method into SIREIG, for instance, all that is
needed is to include the appropriate CALL statement (or statements)
in SIREIG, add one component to a computed GO TO statement in SIREIG,
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TABLE 5

Subroutines Comprising the MAP Program Package

BARN N calls to BARN will generate n random numbers.

EGNVTR Computes orthogonal eigenvectors by a combination
of inverse iteration and Gram-=Schmidt orthogonalization.

FERRET Punches cards and does some storing onto tape.

HOUSE Householder tridiagonalization.

INPUT Reads the input matrices.

INVIT Computes the eigenvectors x by back substitution
and inverse iteration.

L Computes the lower triangular matrix L (and can
compute the determinant of M).

LINVRS Computes the inverse of the matrix L.

MAP The main subroutine for computing frequencies
and modes.

MXML Contro} subroutine for the computafibn'of P.

MXMUL Computes the product of two large matrices.

OUTPUT A control subroutine for all the outputting.

QORR Computes only eigenvalues by a QR methéd.

RETRAN Retransforms the vectors x of P into the vectors

¥y, i.e. multiplies a vector on the left by an
upper triangular matrix.

RGEIG Reduceg the generalized algebraic eigenproblem to
an ordinary one by the method of Cholesky.
RITE gges most of the actual printing and storing onto
pe.
SGEIG Solves the linear real symmetric generalized algebraic
elgenproblem.
SIREIG Solves the real symmetric algebraic eigenproblem.
STURM Computes eigenvalues by a Sturm se i '
moTpute v quence bisection
TRANS Transforms vectors of the tridiagonal matrix computed

by EGNVTR into those of P.



FIGURE 1

Structure of The MAP Program Package
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and let one argument in the SIREIG argument list take on a new value.
At present SIREIG has two eigenvalue methods and two eigenvector
methods. Also at present SGEIG has only way of solving the gener-
alized problem - reduction to an ordinary eigenproblem by the method
of Cholesky. It frequently happens in structural problems that the
input matrices M and K are strongly banded. It would be desirable
to be able to take advantage of that property in order to reduce the
number of arithmetic operations and to reduce the core requirement
of MAP. A method which takes this approach could be implemented and
easily incorporated into MAP (or, to be strictly accurate, into

SGEIG).19

The subroutine L can be used to compute the determinant of
a real symmetric positive definite matrix and to determine whether a
given real symmetric matrix is positive definite. The programs L and
LINVRS can also be the basis for a program which inverts real symme-
tric positive definite matrices or solves a system of linear algebraic
equations which has a real symmetric positive definite matrix of coef-
ficients.* The use of the subroutines L and LINVRS (i.e. of Cholesky
decomposition) can be recommended over Gauss-Jordan elimination and
Gaussian elimination with partial pivoting programs as the bound for
the computational error for Cholesky decomposition is as low as can

be reasonably expected of any method,20 they take advantage of symme-
try, and they require no row interchanges. L can also take advantage
of any band form in the matrix M.

It was the intention of the author in writing MAP that this
program should be as useful in solving a 5x5 problem as it is in
solving a 300x300 problem. In order to realize this goal, the core
requirement of MAP had to depend on the size of the input matrices.
All arrays whose dimensions are functions of the dimensions of the
input matrices M and K are therefore passed through the argument list
of MAP, so that they are dimensioned by the user rather than by MAP.

Thus far nothing has been said about what the maximum dimen-
sion of the M and K matrices which the MAP program package can handle
is, but rather only indicated that it should be about 300. Actually,
there is nothing in the MAP program package, as such, which restricts
the dimension of the input matrices. ©Not only does passing all arrays
through the argument list of MAP make the package practical for small
problems, but it also means that, in this sense, MAP can work with
arbitrarily large matrices. There are, however, three factors which
serve to limit the dimension of the input matrices. They are (1)
computational error increases with the dimension, (2) the requirement
that the whole lower triangular part of one matrix (along with
everything else) must fit in core, and (3) the possible existence of
a maximum running time, charge, or whatever at a computer installation.
The answer to the first depends on how much precision is wanted and

*
Double precision versions DL and DLINVR of L and LINVRS, respec-
tively, have been made by Mrs. S. B. Watson and have been put in the

Bellcomm Applications Program Library (BAPL)
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on whether the user has (and wishes to use) a routine for refining
the values of the eigenvalues. The answer to the second, of course,
depends on how much core is available. With a 65K core and an over-
lay for MAP, the maximum dimension is slightly in excess of 300;
without an overlay, the maximum dimension is between 240 and 260.
The current version of the software at Bellcomm imposes a maximum
charge per run of 2047. This restriction does not limit the size

of the matrices which MAP can handle.

Conclusions

One of the main concerns about a modal analysis program
for large matrices was the possibility of computational error
becoming so large that the computed values of the eigenvalues and
vectors would be rendered meaningless. The results of the simple
beam runs of Example 3 confirmed that computational error is sub-
stantial when using large matrices. In the largest case run, that
is, the 240x240 case, there were one and sometimes two digits of
accuracy in the nonzero eigenvalues. The two zero eigenvalues,
however, had computed values of 0.5768 and 1.2724. 1In this par-
ticular case, the computed answers still had practical value. It
should be pointed out that the input matrices M and K for the
simple beam runs are probably very good approximations. If a user
of MAP made a run using input matrices which were not as accurate
as the corresponding ones in the simple beam runs, there is reason
for him to expect the precision in his answers to be any better,
and perhaps not even as good, as those in the corresponding simple
beam run. Whenever computed answers result from many operations
involving large matrices, therefore, it would seem wise to pay more
than passing attention to the question of how much, if any, pre-

cision remains in the answers.

1015-DLM~-sms D. L. Mather
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MAP _UGER®S GUIDE ————— . MATHER

tlike o.MAP = A MODAL ANALYSIS. PROGRAM - Ce—m

PROGRAMMER D. L. MATHER

SPONSOR Se Ne HOU
UATE SEPTEMBER 1970

PURPOSE. To FIND SOME OR ALL OF THE FREQUENCIES J (IN CPS) AND SOME
- ~OrR AL QF THE MODF SHAPES Y OF ANY LINFAR DISCRETE SYSTEM . . ..
WHICH IS GOVERNED BY A GENERALIZED EIGENVALUE EQUATION OF
—..JHE FORM ——

KY = JMYe

3
|
}
!

IS POSITIVE DEFINITEs (3) M IS NOT ILL-CONDITIONED WITH

‘N_0,_,___%E%gEg%E%E7%uﬁ%EgéQai?é?%Eé&1*M_ANn_s*ABE_29551BL1;_BuI_NQI_ T
MEVHOD (1) THE GENERALIZED ALGEBRAIC EIGENPROBLEM IS REDUCED TO
T CHOLESKY (1;E+ THE SGUARE ROOT METHODT. TRIS TECPNIGUE
1S USED TO COMPUTE A LOWER TRIANGULAR MATRIX L SUCH THAT

= L*{L TRANSPOSE)

(IF M IS POSITIVE DEFINITEs SUCH A MATRIX NOT ONLY EXISTS '
BUT IS ALSO REAL.) THE INITIAL EQUATION CAN NOW BE
WRITTEN AS

e C}ﬁ(ﬁ?)(;(;0k7(7r101ﬁ(3L1C(T}7rAr;r cecie

o
|

‘
i

|
|
|
I
i

KY = JL*{l, TRANSPOSE)Y

i
]

I Ak

J(LINVRS*L) * (({L TRANSPOSE)=%Y)» OR

1

PX = JXe

FOR P = LINVRS*K%x(LINVRS TRANSPOSE) AND X = (L TRANSPOSE)=Y
NOTE THAT THE EIGENVALUES OF P ARF THE SAME AS THOSE IN THE

ORIGINAL PROBLEM.

SAMEVASVTHOSE"OF'P)'CAN BE COMPUTED . IN ANY OF THE
FOLLOWING WAYS

(A) A STURM SEQUENCE BISECTION METHOD TO COMPUTE SOME OR_

(B) A'eR TRANSFORMATIONVMETHOD TO COMPUTE ALL (AND ONLY)
THE _EIGENVALUES

{4) THE EIGENVECTORS OF THE TRIDIAGONAL MATRICES CAN BE COMPUTED
IN_ONF OF THE » ‘ A

hobhopehebokoroapdkhorakaconccbeonn

VECTORS CAN BE SKIPPEDtIFVONLY EIGENVALUESVAREVHANTED)

TP

i

3
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ASSOCIATEL WITH SOME OR ALL OF THE COMPUTED EIGENVALLES
JEGTIMING WITH THE SMALLEST EIGENVALUE. (NOTE: WHILE
THIS METHOD . COMPUTES OKTHOGONAL VECTORS WHEN ALL THF
ZIGFi'VALUES ARE DISTINCT. IT WILL NOT COMPUTE EVFH
LINFARLY INDEPENDENT VECTORS FOR A _MULTIPLE ROOT.) THE
GUMnER OF ITERATIONS IS DETERMINED BY THE USER. ONE
ITERATION IS EQUIVALENT T0 THE METHOD OF BACK
SUBSTITUTION. AS A RULEs THE MORE ACCURATE THAT THE
EIGEMVALUES ARE THE FEWER ITERATIONS THAT WILL BE
NWEERED. ONE TO THREE ITERATIONS AREsy IN GENERAL: ARE
SUFFICIENT.

(=) A COMBIMATION OF IMVERSE ITERATION (USING TWO

. _1IERATIQNS) AND GRAM=-SCHMIDT ORTHOGONALIZATION TO
COMPUTE - ORTHOGONAL VECTORS FOR SOME OR aALL OF THE
COMPUTED EIGENVALUES STARTING WITH THE SMALLEST
EIGEMVALUE . (NOTE: THIS METHOD WILL, IN GENERALe, TAKE
MORE TIME AND REQUIRE 6N MORE LOCATIONS FOR ARRAYS THAN
THE PRECEDING METHOD.)

Trie. VECTORS OF JHE TRIDIAGONAL MATRIX. ARE. TRANSFORMED INTO

THISE OF P (NOTE: THIS TRANSFORMATION IS SKIPPED IF NO

VECTORS afE COVPUTED_AND CAN BE SKIPPFD IF IT IS THE VECTORS

UF THE TRIDIAGONAL MATRIX THAT ARE WANTED)

THE VECTQORS X OF P CAN BE TRANSFORMED INTO THE VECTORS Y

(NOTE e THIS TRANSFORMATION IS SKIPPED IF NO VECTORS ARE

~ COMPUTED OR THE PRECEDING TRANSFORMATION 1S SKIPPEDe AMD

CAN BE SkIPPED IF IT IS THE VECTORS OF P THAT ARE WANTED)

" WHEN THERE ARE SEVERAL MAGNITUDES OF DIFFERENCE BETWEEN

THE EIGENVALUES OF SMALLEST AND LARGEST MAGNITUDES»
THE SMALLEST EIGENVALUES WILL NOT, IN GENERAL, HAVE A LOW
RELATIVE ERROR (THIS FACT CAN BE EASILY ILLUSTRATED FOR

A STURM SEQUENCE METHOD = SEE WILKINSON: Ps. 307)

IF_ONLY A FEW OF THE EIGENVALUES ARE WANTED: A STURM
SEQUEMCE RISECTION AND INVERSE ITERATION COMBINATION WILL.
IN GENERAL: BE FASTER THAN A QR TRANSFORMATION METHOD OR ANY

COMBINATION OF METHODS WHICH INCLUDES A GR TRANSFORMATION

3) IF THE CalLLING PROGRAM HAS STORED THE INPUT MATRIX IN A TWO

ASS UP”TIONS Or

(1)

DIMENSIOMAL ARRAY, THE USER MAY FIND IT CONVENIENT TO CALL
THE SUBRQOUTINE RESTOR THAT ACTS AS AN INTERFACE BETWEEN
PROGRAMS WHICH STORE A MATRIX IN A TWO DIMENSIONAL ARRAY AND
PROGKRAMS WHICH STORE THE LOWER TRIANGULAR PART OF A MATRIX
BY COLUMNS IN A ONE DIMENSIONAL ARRAY BEFORE CALLING MAP

THE PROGRAM (IN ADDITION TO THOSE OF THE METHOD)

' SCRATCH QUT=OF=CORE STORAGE IS NEEDED IN SOME PARTS
__OF_THE_PROGRAM_(NOTE THIS_ASSUMPTION DOES NOT IMPLY

THAT THE PROGRAM CANNOT:» OR EVEN SHOULD NOTv BE USED

(2)

SUBEROUTINE STATEMENT

OUT=OF~C0RE'STORAGEVWILL"BE”USED THAN THE STORAGE

__REQUIREMFENTS OF SMALL MATRICES JUSTIFY)

THE LOWER TRIANGULAR PART OF ONE NXN MATRIX FITS IN CORE

SUBROUTINE MAP(NvSvSSwIIIaITITLE@METHOD@ICHECK;IMK;IUNIT; N

CPs 0T OPCH0PLOTFREQs TABLE#Ce 2]
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1LPUT Xk k %Y THE ARGUNENT LIST sk
N THE NUMBER OF DEGREES OF FREEDOM
Sla) AN ARRAY T0O HOLD THE LOWER TRIANGULAR PART OF
SOME OF THE MATRICES AND MUST THEREFORE BE
e o . DIMENSIONED AT LEAST N*(N+1)/2. . THE LOWER _.
TRIANGULAR PART OF THE MASS MATRIX CAN BE STORED
e IN THIS ARRAY BY COLUMNS AND PASSED THROUGH THE
ARGUMENT LIST (IN WHICH CASE IMK(1) MUST BE
S NEGATIIVE) . R
SS(e) A WORKING ARRAY DIMENSIONED AT LEAST 9N IF
e METHOD(S)=2, AT LEAST 7N IF METHOD(#)=2, AND. AT
LEAST 5N OTHERWISE
111(.). .. THIS_ IS A _WORKING ARRAY WHICH IS USED IF .
EITHER OR BOTH OF THE MASS AND STIFFNESS
. _ARE DEFINED BY THEIR NONZERO FLEMENTS ANp SHOQULD BE
NIMENSIONED AT LEAST 2N. IT IS ALSO A WORKING ARRAY IF
e METHOD(5)=2 IN WHICH CASE IT NEEDS TO BE DIMENSIONED AT
LEAST 2N, OTHERWISE:, III IS A DUMMY INPUT AND NEED NOT
CITITLE(.) AN ARRAY DIMENSIONED 40, CONTAINING SIX HOLLERITH
_CHARACTERS (INCLUDING BLANKS) PFR COMPONENT FOR
A TOTAL OF 240 CHARACTERS. THE FIRST 120 CHARACTERS
e WILl AF PRINTED ON THF FIRST LINE OF PRINT AND = __
THE REMAINING 120 WILL BE PRINTED ON THE SECOND
.. LINg OF PRINT. THE USER CAN THEREFORE USF THIS .
ARRAY TO IDENTIFY A RUN. IF HE DOES NOT WISH TO
___\JSE THIS FEATURE» HE NEED NOT DIMENSION ITITLE
AND INSTEAD SET AN {(UNDIMENSIONED) DUMMY INTEGER
VARTABLE EQUAL TO THE HOLLERITH CHARACTER * AND
PASS THAT THROUGH THIS ARGUMENT.
. METHOD(.) AN ARRAY DIMENSIONED 10 WHICH DETERMINES WHICH _
METHODS WILL BE USED AND SOME RELATED INFORMATION
__METHOD(1) DETERMINES WHAT METHOD WILL BE USED TO REDUCE
~ THE GENERALIZED ALGEBRAIC EIGENPROBLEM TO AN
—_ e ORDINARY ALGERRAIC FIGENPROBLEM S

= =1 AN ORDINARY ALGEBRAIC EIGENPROBLEM IS BEING
e SOLVED (X.E. SKIP THE CHOLESKY DFCOMPOSITION OR.
ANY OTHER GENERALIZED ALGEBRAIC EIGENPROBLEM
METHOD) _ .
1 THE CHOLESKY METHOD (I.E. THE SQUARE ROOT METHOD)
— o 2 __(NOT IMPLEMENTED YET) -
METHOD(2) A REDUCTION IN THE NUMBER OF ARITHMETIC OPERATIONS
IN THE COMPUTATION OF THE LOWER TRIANGULAR MATRIX L.
CAN BE REALIZED IF THE MASS MATRIX IS A BAND MATRIX,

e e THIS INPUT TS EITHER THF DIMENSION OF M OR BAND WIDTH _

OF M AND THEREFORE CAN RANGE FROM i FOR A DIAGONAL
X e _OF THIS

PROGRAM@VBAND'NIDTH;”m(FULL BAND WIDTH = 1)/2 + 1)
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= 1 A STURM SEQUENCE BISECTION METHOD To COMPUTED SOME

———METHOD(S) DETERM

OR ALL OF THE EIGENVALUES IN ASCENDING ORDER
e = 2 A QR TRANSFORMATION METHOD TO COMPUTE ALl (AND
ONLY) THE EIGENVALUES

] ME T W i PUTE VECTORS
OF THE TRIDIAGONAL ATRIX (NOTE° THES IS A DUMMY
INPUT IF METHOD(7)=0)

= 1 AN INVERSE ITERATION METHOD TO COMPUTE VECTORS FOR
— .- SOME OR ALL OF THE COMPUTED EIGENVALUES STARTING

WITH THE VECTOR ASSOCIATED WITH THE SMALLEST

—— e EIGENVALUE
= 2 A COMBINATION.OF INVERSE ITERATION AND GRAM=

SCHMIDT ORTHOGONALIZATION TO COMPUTE VECTORS FOR

SOME OR ALL OF THE COMPUTED EIGENVALUES STARTING
WITH THE VECTOR ASSOCIATED WITH THE SMALLEST

EIGENVALUE

- METHOD(6) THIS IS A DUMMY INPUT IF METHOD(4)=2 AND OTHERWISE IS

THE NUMBER OF EIGENVALUES TO BE COMPUTED STARTING WITH

THE SMALLEST ONE (NOTE: AN FIGENVALUE OF MULTIPLICITY M
IS COUNTED AS M EIGENVALUES)

. METHOD(Z) THIS 1S THE NUMBFR OF VFCTORS OF THE TRIDIAGONAL MATRIX

TO BE COMPUTED (NOTE: IF NO VECTORS ARE WANTED SET THIS
INPUT _EQUAL TO Q) - .

METHOD(8) THIS IS A DUMMY INPUT IF METHOD(5)=2 AND

OTHERWISE IS THE NUMBRER OF ITERATIONS THAT WIll BE USED

IN THE INVERSE ITERATION METHOD (SEE THE "METHOD"

THE VALUE OF THIS INPUT)

_____METHOD(9) THIS IS A DUMMY INPUT IF METHOD(7)=0

= 0 DO NOT TRANSFORM THE VECTORS OF THE TRIDIAGONAL
MATRIX INTO THOSE OF P

=1 DO
METHOD(10)THIg IS A DUMMY INPUT IF METHOD(7)=0 OR METHOD(9)=1

AND OTHERWISE THIS IS THE NUMBER OF VECTORS OF P THAT
SHOULD BE TRANSFORMED INTO THE VECTORS Y OF THE

~ ORIGINAL PROBLEM (NOTE: THIS CAN BE ZERO)
JCHECK(.) AN ARRAY DIMENSIONED AV LEAST & TO DETERMINE WHAT:» IF

ANY, AUXILIARY INFORMATION SHOULD BE PRINTED
ICHECK(1) = 0 THE ARGUMENT LISTS OF MaPe» INPUT» SGEIG» OQUTPUT,

REEIGs» SIREIGs AND RETRAN WILL NOT BE PRINTED
1 _ONLY THE ARGUMENT L IST OF MAP WILL BE PRINTED

LERH

2 ONLY THE ARGUMENT LISTS OF MAPs INPUT» SGEIG»
—AND QUTPUT WIll BE PRINTED

|
{

o
o
o
s

3 ALL SEVEN”ARGUHENT LISTSVVILL BE PRINTED

TRIDIAGONALVHATRIX-NiLLVNOT BEVPRINTED
1 THEY WILL -

ICHECK(3)

59 =i B4
o
bt
n

ISVA DUMMY INPUT IF METHOD(S) 1S NOT ONE

4]
Ny

HILL BE PRINTED
ROTH OF THE AROVE WIlLlL 8F PRINTED

(=] & ]

(NONE OF THE ABOVE WILL BE PRINTED

nnnnnnnnnnnn,nnnnnn‘no'

1
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AN ARRAY DIMENSIONED 2 TO DETERMINE THE FORMAT

IMK(1)

WITH WHICH THE INPUT MATRICES WILL BE READ
FORMAT FOR THE MASS MATRIX (IF THE MASS MATRIX IS

BEING PASSED THROUGH THE ARGUMENT LIST SET THIS
COMPONENT FQUAL TO A NEGATIVE INTEGFR = BEWARE NOT TO

PASS THE MASS MATRIX THRU THE ARGUMENT LIST WHEN
IMK(2)=1 AS THE ARRAY S IS USED AS A WORKING AREA THEN). .

= 1 NASTRAN FORMAT (ALL THE NONZERO ELEMENTS BY ROWS
— — AND THEIR-NASTRAN ROW AND COLUMN NUMBERS)

"z 2 FIRST RECORD OF IUNIT(1) CONSISTS OF TWO BINARY

INTEGERS = A NUMBER T0 IDENTIFY THE DATA -~

FOR THE USER FOLLOWED BY THE NUMBER. OF
DEGREFS OF FREEDOM, THE SECOND RECORD . . . _

CONSISTS OF THE LOWER TRIANGULAR PART OF

IMK(2)

THE MASS MATRIX STORED IN BINARY BY COLUMNS.
FORMAT FOR THE STIFFNESS MATRIX (MAKE THIS VARIABLE

e NEGATIVE IF THE STIFFNESS MATRIX HAS BEEN STORED ON

IUNIT(6) IN THE PROPER WAY ALREADY)
=1 _NASTRAN FORMAT -

= 2 THE WHOLE STIFFNESS MATRIX STORED IN BINARY
BY ROWS BEGINNING WITH THE FIRST ROW ON THE .

FIRST RECORD (THIS 1S PERHAPS THE BEST FORM
AS IT IS THE FORM REQUIRED BRY SGEIG)

i
G

SAME AS FOR (2) EXCEPT THAT THE MASS AND
STIEFNESS MATRICES ARE ON THE SAME MASS =~

STORAGE UNIT AND IMK(1) = 2 (S0 THAT THE
FIRST ROW OF T

IUNIT(.)

THIRD RECORD RATHER THAN ON THE FIRST)

AN INTFGER ARRAY DIMENSIONED 15 7O DFFINF THE
NUMBERS OF THE MASS STORAGE UNITS (OR AREAS)

DO OO PO OO OO CO0NOOONOCO0ONGONDONONAI0

WHICH CONTAIN THE FOLLOWING DATA (NOTE: THE
BELLCOMM CONVENTION FOR NUMBERS DENOTING MASS
STORAGE UNITS IS THAT ANY INTEGER FROM 1 TO 40

TUNIT(1)

INCLUSIVE MAY BE USED EXCEPT 5S¢ 6+ 7» AND 30)
THE MASS MATRIX IN ANY UNITS

IUNIT(Z)

STIFFNESS MATRIX‘IN THE SAME UNITS AS THE MASS MATRIX

IUNIT(4)

A SECONDVNORKINGWAREA FOR'NASTRN. THIS 1S THEREFORE
Y_CO * ASTRA A ARF NOT_ USED

IUNIT (D)

THE LOWER TRIANGULAR PART OF THE—MASS MATRIX IS
STORFD 8Y COLUMNS ON THE FIRST anND ONLY RECORD

OF THIS UNIT IN BINARY IF THE MASS MATRIX NEEDS TO
s IR T ; ] NEFDED FOR

nnpnnnnn

|
|
l

oUTPUT BUT'THE'USER WANTS IT SAVED ANYWAY, MAKE
THIS INPUT POSITIVE

IUNIT(6)

THE WHOLE STIFFNESS MATRIX IN BINARYVBY ROHS

BY THEVSUBROUTINE"INPUT oa'sv'rnz USER FOR‘MATMUL AND
oOUTPUT . A - ; ATIVE.

IUNIT(7)

THE LOWER TREANGULAR PARTVOF THE MATRIX L”IN .
RIMARY RY E . p AMNLYY RECORD

ONTO CARDS: oa S?ORING oN TAPE);J'THE USER CAN PREVENT
17T EROM REIL 3 K 5 T3 1 NUIMERE R Y.

IUNIT(8)

IN BINARY ONM THE EIRST REC

IUNIT(9)

THE WHOLE L INVERSE IN BINARY ONE Row”PER ECORD
BEGINMING ¥ITH THE FIRST ROW OM THE EIRST RECORD . o
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DY RGEIG FOR MXML AND OUTPUT
IUNIT(10) THE WHOLE L INVERSE TRANSPOSE IN BINARY ONE ROW PER

BY RGEIG FOR OUTPUT., THE USER CAN PREVENT IT FROM
. BEING SAVED BY MAKING THE UNIT NUMBER NEGATIVE,
CIUNIT(11) THE LOWER TRIANGULAR PART OF THE MATRIX P BY COLUMNS
cime i IN gINARY ON THE FIRST RECORD BY RGEIG FOR QUTPUT
IUNIT(12) EIGENVECTORS OF P IN BINARY ONE PER RECORD BEGINNING
- WITH THE EIGENVECTOR WHICH IS_ASSOCIATED WITH THE
SMALLEST CIGENVALUE ON THE FIRST RECORD BY INVIT
AND TRANS FOR_RETRAN AND OUTPUT UNLESS BOTH METHOD(S5)=1
AND METHOD(7)=0
 TUNIT(13) THE VECTORS OF THE TRIDIAGONAL MATRIX IN BINARY ONE PER
RECORD BEGINNING WITH THE VECTOR ASSOCIATED WITH THE
.. SMALLEST EIGENVALUE ON _THE FIRST RECORD IF METHOD(5)=1
AND METHOD(9)=0, OR METHOD(S5)=2 FOR TRANS OR PRINTING
ThHEM (ICHECK(4)=1) _ .
IUNIT(14) A WORKING AREA FOR THE GR EIGENVALUE ROUTINE IF
METHOD(4)=2 AND A DUMMY COMPONENT OTHERWISE .

IUNIT(lS) THE METHOD(10) MODE SHAPES IN BINARY ONE PER RECORD
e pEGINNING WIH THE MODE SHAPE WHICH IS ASSOCIATED WITH
THE SMALLEST FREQUENCY ON THE FIRST RECORD BY RETRAN

. EOR OUTPUY_ = _ ——
0P () AN ARRAY DIMENSIONED 6 TO DETERMINE WHICHs IF
B ANY, OF THE MATRICES USED IN THIS PROGRAM PACKAGE
AND WHICH OF THE RESULTS OF THE EIGENPROBLEMS
o __MWILL BE PRINTED .
O (1) DETERMINES WHICHs IF ANY, OF THE MATRICES Ms Ko
_ AND P WILL BE_PRINTED L
NONE
K
K AND M
Ke M AND P

EEEE s i u
U EN=

THE'NASTRANVNUMBERS WILL NOT BE PRINTED
THEY wIll

ETERMINES WHICHe IF ANY., OF THE MATRICES Lo
NVERSE AND L INVERSE TRANSPOSE WILL BE PRINTED
NONE -

i

L AND L INVERSE
AL.l. THREE

L. INVERSE
L _INVERSE AND L. INVERSE TRANSPOSE

1ope s o E i O N

L INVERSE TRANSPOSE
QP (4) g

oHO £l b ol - ol

TGENPROBLEMS WILL BE PRINTED
NONE

FREQUENCIES IN (RAD/SEC)**Z AND EIGENVECTORS oF P

ONLY”THEVFREQUENCIESVXN (RAD/SEC)**Z

5§ 1 BY A0 B0 1 nm

OGN -

_OMLY THE ERFQUENCIFS IN CPS —
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or(5)

DETERMINES WHAT PART_OF EACH OF THE MATRICES DEFINED

BY OP(1) AND OP(3) wILL BE PRINTED. (THIS IS THEREFORE
A_DUMMY COMPONENT IF OP(1) = QP(3) =0) :

0 THE WHOLE MATRIX WILL BE PRINTED
1 _ONLY THE LOWER TRIANGULAR PART OF THE MATRIX (OR

THE UPPER TRIANGULAR PART IN THE CASE OF L
INVERSE TRANSPOSE)

DETERMINES THE FORMAT WITH WHICH THE RESULTS OF
THE _EIGENPROBLEMS WILL BE PRINTED (THIS IS THEREFORE A

DUMMY COMPONENT IF OP(4) = 0)
= 1 FACH FREQUENCY AND ITS MODE SHAPE. AND THEN A

LIST OF ALL THE FREQUENCIES COMPUTED
= 2 (NOT IMPLEMENTED YFET)

0T ()

AN ARRAY DIMENSIONED 6 TO DETERMINE WHICH» IF

—_—  ANY, MATRICFS AND WHICH OF THE RESULTS. IF ANY,

OT(1)

OF THE EIGENPROBLEMS WILL BE STORED ON TAPE
DETERMINES WHICHs IF ANYe OF THFE MATRICES Me Ko

AND P WILL BE PUT ON TAPE
= 0 NONME.

K
K AND M ——

Ke M AND P
M

M AND P
p

oT(2)

S IS A DUMMY INPUT IF NASTRAN DATA WERE NOT USED

Q1(3)

THE NASTRAN NUMBERS WILL NOT BE STORED ON TAPE
THEY WILL :
E

FRMINES WHICHs IF ANY, OF THE MATRICES L. =
NVERSE AND L INVERSE TRANSPOSE WILL BE PRINTED .

NONE

L
L _AND L INVERSE

ALL THREE
L INVERSE

L INVERSE AND L INVERSE TRANSPOSE
L. INVERSE TRANSPOSE

oT (4)

m-4mtnktdmra0tqqracrqo(n$(ﬁmp:

MO 81 80 e o) v e O -4 TR TN I

A

ERMINES WHICH» IF ANY» OF THE RESULTS OF THE
ENPRORLEMS WILL RF PUT ON TAPE

NONE

FREQUENCIES IN (RAD/SEC)#*%2 AND MODE SHAPES Y
EREQUENCIES In CPS AND FIGENVECTORS X QOF P

FREQUENCIES IN (RAD/SEC)%%2 AND EIGENVECTORS OfF P

FREQUENCIES IN CPS AND MODE SHAPES Y
ONLY THE FREQUENCIES IN (RAD/SEC) %%D

Q7T(5)

ONMLY THE FREQUENCIES IN CPS
ETeRMINES HOW THE MATRICES WILL BF STORED

rup-qotns.ﬂmb-o

ull:l!anllllhla

THE WHOLE MATRIX IN BINARY ONE ROW PER RECORD
] JMNS (OR THE

BY Rows"IN THEVCASE OF»L INVERSE TRANSPOSE) IN
RINARY ON ONE RFCORD o

"
(¢

ALL AND ONLY THE NONZERO ELEMENTS AND THEIR

cofFocchoponornaporoncacn
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OPCH(.)

THE NUMBER OF THE UNIT TO WHICH THE OUTPUT TAPE IS

CASSIGHFD N

AN INTEGER ARRAY DIMENSIONED 3 TO DETERMINE WHAT

OPCH({1}

f

DETERMINES WHICHs IF ANYp MATRICEs”wILL’aE PUNCHED
NNTn CARNDS (O i 3t ) “A ] L

HED)

NONE

Fnc
v

OPCH(2)

ETERMINES WHICH. IF ANY., OF THE MATRICES L.

NVERSEs AND L INVERSE TRANSPOSE WILL BE PUNCHED
ANQNE .

L AND LINVERSF R

AlL THREE
L. _INVERSE

L INVERSE AND L INVERSE TRANSPOSE
L._INVERSE TRANSPOSE

OPCH(3)

|
l
l

O NHE GN =[O == OO F [

ETERMINES WHICH» IF ANYs, OF THE RESULTS OF THE
IGENPRORLEMS WILL RF PUNCHED

NONE
FREQUENCIES IN {(RAD/SEC)**2 AND EIGENVECTORS OF P

FREQUENCIES IN (RAD/SEC)®*%x2 AND MODE SHAPES Y
FREQUENCIES IN CPS AND EIGENVECTORS X OF P

FREQUENCIES IN CPS AND MODE SHAPES Y
ONLY THE FREQUENCIES IN (RAD/SEC)*%2

S

QPLOT(.)

BOPA0 b3 JRE LD [ L TV O RN R LD G N {8 D e (NN g

N EHRNE O

ONLY THE FREQUENCIES IN CPS
(NOT IMPLEMENTED YET)

|
|

|

*%x BY MASS STORAGE DEVICE OR CARDS *#*x

THE STIFFNESS MATRIXe POSSIBLY THE MASS MATRIX, AND WHATEVER

(\.rwnr:‘(‘.r.‘nr:-r,rt;(,chnhn(‘,(:-c-nr*.h(;rr,r;r.nnr oo Coo o
il

INFORMATION: IF ANYs IS REQUIRED BY IMK(1) AND IMK(2)

i
|

C OUTPUT x%%x BY THE ARGUMENT LIST %*x%

C

< S5(.) THE MAIN DIAGONAL OF THE TRIDIAGONAL MATRIX IS IN
—£ SS(1)29542) ra22295({N) AND THE OFF-DIAGONAL IS IN

C SS(N+2)DSS(N+3)9eo99$S(2N)

(ORI FREQ(.) OL.I 3 ( ;

C ORDER AND MUST THEREFORE BE DIMENSIONED AT LEAST N

C (EVEN IF FEWER THAN N FREQUENCIES WERE COMPUTED) = _

C TABLE () ALL THE NASTRAN NUMBERS IN ASCENDING ORDER IF

G J IF NASTH ATA MWERE S {TeCa IF

C

[ Cla)

C

G C(L)

C

C cL2)

C

(
|

ITER S)
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Appendix 1-9

MAP_USER'S GUIDE B MATHER
C3)___ MAX(ARS(P(I,1)))/MIN(ABS(P(I,1)))» PROVIOED THAT THE
DEMOMINATOR IS NOT ZERO
Cl4) THE SUM OF ALL. THE COMPUTED FREQUENCIES IN (RAD/SEC)¥*2
C(5) MAX (ABS(J(I1)))/MIN(ABS(J(I))) s PROVIDED THAT THE

——__ DENOMINATOR IS NOT ZERQs WHERE I RANGES FROM 1 TO THE
NUMBER OF FREQUENCIES COMPUTED
AL CONTROL WILL BE IBANSEERRED_ERQM_IHLS_SUBRQUIINE
TO THAT STATEMENT IN THE CALLING PROGRAM NUMBERED
~1_.IF AMNY OF THE FOLLOWING FRRORS IS DETECTED:
1. AN ILLEGAL VALUE FOR ONE OF THE INPUT ARGUMENTS
———— e . JIN_THE MAP SUBROUTINE STATEMENT __ .. —
2. THE DIMENSIONS OF M AND K ARE DIFFERENT
{THIS CHECK TS MADE WHEN THE MATRICES ARE
DEFINED BY THEIR NONZERO ELEMENTS TO INSURE
- ... THAT EACH ROW HAS AT LEAST ONE NONZERQ ELEMENT
3. AN IMAGINARY NUMBER APPEARS IN THE MATRIX L

*** Y THh PRINTED WORD *;*-——- T .

"~ 1. INFORMATION IDEMTIFYING THIS RUN IF ITITLE(1) (OR A

_ _DUMMY_INTFGER_VARIABLE IN ITS PLACE) IS NOT EQUAL _TO *x*

2.  THE ARGUMENT LIST OF MAP IF ICHECK(1) = 1s2+3s THE
ARGUMENT | ISTS OF MAP, »_ SGEIGs AND OUTPUT IF )
ICHECK (1) = 2¢3¢ AND THE ARGUMENT LISTS OF ALL THESE PLUS

____THOSE OF RGEIGe SIREIG: AND RETRAN IF ICHECK(1) = 3 _

%.  THE TRACE OF P IN (RAD/SEC)*%2

MAGNITUDE TO THAT OF SMALLEST MAGNITUDE (PROVIDED THAT THE
LATTER IS NOT ZERO)

. 4, THE RATIO OF THE MAIN DIAGONAL ELEMENT OF P QOF GREATEST __ _ .

5. THE SUM OF ALL THE COMPUTED EIGENVALUES IN (RAD/SEC)**2

6o THE RATIO OF THE COMPUTED FREQUENCY OF LARGEST MAGNITUDE 7O
THAT OF THE SMALLEST MAGNITUDE, PROVIDED THE LATTER IS NOT
ZERO (IN CH € MES S P )

8. THE MAIN DIAGONAL AND THE OFF=DIAGONAL OF THE REAL

8., ERROR MESSAGES WHEN THE FAILURE EXIT (I.E. THE ARGUMENT

SYMMETRIC TRIDIAGONAL MATRIX IN (RAD/SEC)*%2 IF ICHECK(2)=1 _

_ . . %) IS USEnD
C e 9., THE INFORMATION DETERMINED BY THE VALUES OF THE COMPONENTS
L OF THE INpUT ARGUMENT QP AND JCHECK(2=4) _ ~
C

. C wxkk RY TAPE %ok
C

e THE INFORMATION DFEIFRMINED BY THE VALUFS OF THE COMPONENTS
C OF THE INPUT ARGUMENT OT
C ﬁ
c %% BY CARDS #kk

_C
C THE INFORMATIOM DETERMINED BY THE VALUES OF THE COMPONENTS

S O QF THE INPUT ARGUMENT QPCH
C

_C. _ *¥x% RY PLOTS s%x

|

(NOT IMPLEMENTED YET)

}

#=xk Y SCRATCH MASS STORAGE ok

COoOrcoo

SEE THE DFEINITIONS OF IUNIT(5)=IUNIT(15)
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SUSBROUTINES WEEDED TO USE MAP

INPUT READS THE MASS AND STIFFNESS MATRICES AND PUTS THEM

SGEILG SOLVES A GENERALIZED ALGEBRAIC EIGENPROBLEM
e OQUTPUT  DOFS NEARLY ALl THE PRINTINGe AND ALL THE PUNCHING ..
ONTO CARDS AND STORING ON TAPE
NASTRN . COLLECTS ALL THE NASTRAN NUMBERS AND PUTS THEM
INTO A TABLE IN ASCENDING ORDER
. RGEIG  REDUCES A GENERALIZFD ALGEBRAIC EIGENPROBLEM TO AN
ORDINARY ONE :

e SIREIG _SOLVES THE REAL SYMMETRIC ALGEBRAIC EIGENPROBLEM
IN aANY OF THREE WAYS
__RETRAN  RETRANSFORMS THE EIGENVECTORS OF P _INTO MODE SHAPES
HTRAN UNIyVAC ROUTINE USED BY NASTRN FOR STORING AND
e RETRIEVING INFORMATION ON MASS STORAGE UNITS
L COMPUTES THE MATRIX L
- LINVRS COMPUTES L. INVERSE
MX ML COMPUTES THE MATRIX P USING MXMUL
o Mxmur  CcOMpUTES THE PRODUCT OF CERTAIN TWO MATRICES
HOUSE TRINIAGONALIZES THE MATRIX P
. STuRM  COMPUTES SOME (OR ALL) OF THE FREQUENCIFS ==
INVIT COMPUTES SOME (OR ALL) OF THE EIGENVECTORS
e =SCHMIDT
ORTHOGONALIZATION
— N RITE DOES THE ACTUAL PRINTING AND SOME STOQRING ON TAPE

OF MATRICES FOR THE SUBROUTINE OUTPUT
FERRET SEARCHES A MATRIX FOR ITS NONZERO ELEMENTS
BARN A RANDOM NUMBER GENERATOR

!

e sl e Rl sRoksisiolal sk R e NS SNGN ool o ol ol el ol o N o o N N ol Sl @I SN S I gl o

Txxkkrkgrkxrkthiks INTRODUCTORY FORTRAN STATEMENTS sdxkxksksikbxkxkkkk

SUBROUTINE STATEMENT

SUBROUTINE MA?(NFSPSSOIIIOITITLEPMETHOD'ICHECKUIMKPIUNITP

I T : 0P-0T:0PCH»OPLOT FREQs TABLE-Ce$) _
C

_C _SPECIFICATION STATEMENTS o
C

REAL S(1)»SS5(1).FREG(1)C(1)

INTEGER III(l)aMETHOD(i)vIMK(l) IUNIT(l)rOP(l)'OT(l)o

- - INTOQ THF FORM REQUIRFD BY SGFIG IF THEY ARE NOT ALREADY

L 9ICHFCK(1)“
_ _ DATA NQOQID/**e/ .
C
C _ kkktdrpkkkkxrxkgokkkdr SOME PRELIMINARIES &akgkfkkdkddopigokdodogikpkpkykk
¢
L PRINT THE RUN ID
C .
e IFUITITLE(1).-FQ.NOQID) GOTO 10 o
WRITE(6:1001) (ITITLE(I) I=1.40)
I . e . _
C  PRIMT THE ARGUMENT LIST OF MAP
C

1C IF(ICHECK(l) EQ 0) GOTO 20
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(14¥ (1) 21=192) s (TUNIT(I)#T=1715)5 (OP(I)sI=1¢6),(OT(I)sI=1
v0) e (OPCHUT) e 1=1¢3) s ITITLE(1)
_IF(ICHECK(1)+NE.0) ICHECK(1)=ICHECK(1)=1_

¢ MISCELLANEQUS

U,

“

—NARGS=17 3 NUMBER OF ARGUMEMTS IN THE SUBROUTINE STATEMENT

¢ CHECK THE REASCHABLENESS QF SOME. OF : THE INPUT ARGUMENTS

w

=
fu

[N

24

o IE(N.GT.0) 6GOTC 22 @ N
WRITE(622003) :

- ARITE(6:2004) 1
RETURN NARGS

IF(=1,LE.METHOD(1) s AND.METHOD(1) .LE-1) GOTO 23 @ METHOD AND N
e dEBITE(6:2003) R B

WRITE(6:2005) METHOD(1)
e RETURN NARGS

IF(1.LE-METHOpD(2) s AND.METHOD(2) .LE.N) GOTO 24

WRITE(622003)

WRITE(652006) MsMETHOD(2)

METHOD(2) =N

WRITE(622007). METHOD(2)

e JECL W LEMETHOD(Y) s AND.METHOD(4) oLEL2) GOTO 25

WrRITE(6,2003)

e —— WRITE(602008) METHOD(H4)

25

- e IFU1.LE.METHOD(6 THOD(6) » 2 e

RETURN NARGS

IF (METHOD(4) «NE+1) GOTO 26 3 METHOD(1) fMETHOD(6) N

WRITE(6:2003)
WRITE(622004) METHOD(1) METHOD(6) ¢ N

RETURN NARGS

IF(O.LEeMETHOb(?)-AND.METHOD(7)¢LE9N) GOTO 28
WRITE (£2003)

r
—— .

3G

WRITE(692010) NeMETHOD(7)
RETURN NARGS

IF(2.LE.OP(1) ,AND-OP(1}.LT.6) GOTO 29
0T(1).LT.6) GOATO 29

IF(OPCH(1) ,LT,2.0R.0PCH(1).EQ.6) GOTO 31
WRITE(6:2032) TUNIT(S) :0P{1)0T(1),0PCH(1)

RETURN NARGS

MSAVE=1
IE(IMK(2).GTa0) MSAVESMSAVE+1

IF(IUNIT(7).6T.0) GOTO 35 § DOES L. NEED TO BE SAVED?
JE(11F-0P(3) AND-OP(3).LE.3) GOTO 32

IF(1.LE-OT(3) ,AND.OT(3).LE.3) 60TO 32
IF(OPCHI2) FQ . N00R.3:,L.T.OPCH{2)) GOTO 35

WRITE(602013) TUNIT(7)20P(3):0T(3),0PCH{2)
RETURN NARGS

ARG EKRKEE
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C . s e e et s - e e s sa—
3b IF (MSAVE.EQ. 0) GOTO 50
40 .QALLHINEUILNLJLSSilMKzIQNIT’lﬁHEQKLIQASElIABLEJﬁle
C

L oskapkrrsdokkk SGLVE THE GENFRALIZED ALGEBRAIC EIGENPROBLEM sckackskskikx
C
sSU IL=TONITLS) —

 IONIT(5)=IUNIT(3)
 CALL SGEIGIN?S:SSeTI11oFREQMETHOD s ICHECK  TUNIT(5) »C$70)

e IUNIT(5)=IU
C . . .
O kR doRRgockkkkkraokkgorkkkkxkk RECORD THE RESULTS  skakodkokskodok ik okok ok ok s s ok ok ok oge ko ook
™ : —
“ ¢
¢ UHANGE  (RAD/SECIxx2 TO CPs I [
C
: e TWOPI=6.28318%2 . @ _ ) —
NFREGQ=N

_ IE(METHOD(4) .EQ.1) NEREQSMETHOD (&) R
DO 60 I=1¢NFREQ
SS(2xN+TISFREFQ(T) R
IF (FREG(I),GE,0.) GOTO 60
. WRITE(A21003) T:FREQ(T) SR
a0 FREQ(I)=SGRT (ABS(FREQ(I)))/TWOPI
L. .
C  NOW RECORD WITHOUT DELAY
¢ _
IF (METHOD(1) eNE+=1+ANDsMETHOD(3) «6T.0) WRITE(6,2014) C(1)
WRITE(6,1004) (C(I)pI=203) I
WRITE(6¢1005) MFREQ»C(4)+C(5)
IE (JCHFCK(2) oEQe1) WRITE(601006) (12SS(I)eI=10¢N)
IF (ICHECK(2) +EQ+1) WRITE(671007) (I+SS(2%N+I)¢I=2/N)
IFORM(1)=1
IFORM(2) =2
IFORM(3) =2
IFORM (4] =4
IFORM(5)=1
IFORM(61=1
UNIT(1)=IUNIT(6)
UNIT(2)=IUNIT(5)
. B UNIT(3)=IUNIT(7) o
. UNIT(4)=IUNIT(9)
UNTT(S)=TUNIT(10)
UNIT(6)=IUNIT(11)
UNIT(7)=TUNIT(12) _
UNIT(8)=IUNIT(15)

e TE(IMKCL) aNE 1 ANDL IMK(2) . NE-1) TABLE(LIZ0
CALL OUTPUT(N;S»SS(3%N+1) s ITITLE, NFREQ:METHOD(7) » IFORM>

2 OFQPCH,QT20P! OT 2 UNTTe ICHECK s TABLE : SS{2%N+1) s FREQ)

RETURN
70 RETURN NARGS

—_L - .
¢ dEdkkFpioriokkispdgorionkRers: FORMAT STATEMENTS sdokdoksdpiokkgdokoRg ik Rk

(o
10Ul FORMAT(”i’920A6/’07s20A6//)
1002 . OMAP aRGUMEN 2

C
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. u1492169cl2ﬁEQEEXPVICHECK StelI2s6Xe TIMK "aclé/’ 9919X9
N tIUMIT =151/ 519X S0P ’9961294X9‘0T “’vSIZPI6y4Xa
. IGPCH =% 312:4Xe PITITLE(YL) =%sA6). .
s FORMAT (TOIMPUT ERROR IN MAPI?)
a,‘;c;= E -,E-g:__AI(!.j.vlzlxzvm :??16!
LUy FOR“AT{7+7 21X, "METHOD(1) =9,16)
2006 e ECHMAT( 421X "METHOD(2) ='¢16) B
Fuu’Y FCs»AaT(POMETHOD (2) WAS CHANGED TO N? METHOD(2) =¢%,16)
e ldle FCRAAT (747 ,21X, TMETHOD(R) =%216)
cudg FurmAT("+7, 21X METHOD(1) =3 16:5X tMETHOD(6) =%, 16
N SAe N =t 16) e
204U FCORMA T(°+’rEle°N “916§5XP°METHOD(7) “3916)
20L2 . - 5 -MATRIX NEEDS TQ BE ‘s
o 9STOQED OUT°0F COREv BUT ITS UNIT NUMBER IS NOT POSITIVE:®
. Z0IunIT(D) =2, 1610X,%0P(1) =%,32,10Xs?0T(1) =%:72,10X»
o YOPCH(1) =*rel2)
C2Lls ~IJA1iA1L_QlNEuI_EBBQB_IN_MAEL”_L_MAIBLX"NEEDS To BE "¢ .
- *STORED QUT=0F=CORE: BUT ITS UNIT NUMBER IS NOT POSITIVE:®
oo . . LFOTUNTIT(T) =eT6e0Xe'0P(3) Z,12:5Xe*0T(3) =%512e8%s . ____ .
- TOPCH(2) Tv912)
2016 FORMAT(*UDETERMINANT OF M MATRIX =t,iPFi15.7) ___ _ _ _
10U3 FORMAT(*0A FREQUENCY IN (RAD/SEC)*%2 IS NEGATIVE: I =%
o e 149 2Xp APELIYTY -
10JkL FORMAT(YUTRACE OF P =93 1PE15:7+5Xe *MAX(ABS(P(I:1)))/%
S o ) TMIN(ABS(P(TI»T))) =t iPE1S.7)
10US FORMAT('0OTHE', 16+ % SMALLEST FREQUENCIES WERE COMPUTED®/
° T0SUM OF COMPUTED FREQUENCIES IN (RAD/SEC)%%2 =%, —
0 IPEL14.7/70MAX(ABS(J(I)}))/MIN(ABS(J{(I))) =% 1PE14.7»
s ' WHERE I RUNS FROM 1 TO THE NUMBER OF EIGENVALUES 9,
* YCOMPUTEDY)
~lous FORMAT(/*0%¢50X *TRIDIAGONAL MATRIX IN (RAD/SEC)Ix%2t/
. TOMAIN DIAGONAL:? /(7 *26(I6r1PE14.7)))
- lou7 FCRMAT(*O0OFF NIAGONAL:?/(¢ %,6(16s1PE14:7)))

END




RESTOR

TIILL RESTOR = RESTQRE A MATRIX

PROGRAMMER D, Lo MATHER
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SPONSUR B Se. MNe HOU )

DATE SEPTEWQER 1970 ~

PURPOS& TO STORE THE LOWER TRIANGULAR PART OF A MATRIX WHICH IS
STORED IN A TwWO DIMENSIONAL ARRAY BY COLUMNS AS THOUGH

__IT WERE STOREQ”}N A ONE DIMENSIONAL ARRAY

SUSRUUTINE STATEMENT

SUSROUTINE RESTOR (MAXNsNsA)

LNPUT ~ BY THE ARGUMENT LIST

MAXN__THE ARRAY A IS ASSUMED TO BE DIMENSIONED MAXNsMAXN

IN THE CALLING PROGRAM

il THE ACTuAL DIMENSION OF THE MATRIX

A THE ARRAY CONTAINING THE MATRIX
OUTPUT BY THE ARGUMENT LIST '
o A THE ARRAY CONTAINING THE LOWER TRIANGULAR PART OF

THE INPUT MATRIX BY COLUMNS STORED AS THOUGH THE

ARRAY WERE A ONE DIMENSIONAL ONE

SUBPROGRAMS USED

NONE

.ﬂ()ﬁﬂ(')ﬁﬁﬁﬁﬂﬁﬁ(‘)ﬁ()()(.C(‘:(:C(:ﬂﬂ(?ﬁ()(l(')(' COCCOoO0n

|

leac. o

cooO

SUBROUTINE STATEMENT

SUBROUTINE RESTOR(MAXNsN»A)

SPECIFICATION STATEMENTS

DIMENSION A(L)

CHANGE THE WAY THE MATRIX IS STORED

DO 10 J=2¢N
JMIZJ=1

10

JSKIP=UMIEN=JxJMI/2
ISKIP=JUM1%MAXN

DO 10 I=JeN
A(T+JSKIP)=A(I+ISKIP)

RETURN
END







